
LECTURE 9

Principles of

Operating Systems

CPU SCHEDULING ALGORITHMS

(FCFS AND SJF)

Scheduling Policies

 First-Come First-Serve (FCFS)

 Shortest Job First (SJF)

 Non-preemptive

 Pre-emptive

First Come First Serve (FCFS)

Scheduling
 Policy: Process that requests the CPU FIRST

is allocated the CPU FIRST.

 FCFS is a non-preemptive algorithm.

 Implementation - using FIFO queues
 incoming process is added to the tail of the queue.

 Process selected for execution is taken from head of
queue.

 Performance metric - Average waiting time in
queue.

 Gantt Charts are used to visualize schedules.

First-Come, First-Served(FCFS)

Scheduling
 Example

Process Burst Time

P1 24

P2 3

P3 3

 Suppose the arrival

order for the processes

is
 P1, P2, P3

 Waiting time
 P1 = 0;

 P2 = 24;

 P3 = 27;

 Average waiting time
 (0+24+27)/3 = 17

 Average completion time

 (24+27+30)/3 = 27

0 24 27 30

P1 P2 P3

Gantt Chart for Schedule

FCFS Scheduling (cont.)

 Example

Process Burst Time

P1 24

P2 3

P3 3

 Suppose the arrival order

for the processes is

 P2, P3, P1

 Waiting time

 P1 = 6; P2 = 0; P3 = 3;

 Average waiting time

 (6+0+3)/3 = 3 , better..

 Average waiting time

 (3+6+30)/3 = 13 , better..

 Convoy Effect:
 short process behind long process,

e.g. 1 CPU bound process, many

I/O bound processes.

0 3 6 30

P1 P2 P3

Gantt Chart for Schedule

Shortest-Job-First(SJF) Scheduling

 Associate with each process the length of its next
CPU burst.

 Use these lengths to schedule the process with
the shortest time.

 Two Schemes:
 Scheme 1: Non-preemptive

 Once CPU is given to the process it cannot be preempted
until it completes its CPU burst.

 Scheme 2: Preemptive

 If a new CPU process arrives with CPU burst length less
than remaining time of current executing process, preempt.
Also called Shortest-Remaining-Time-First (SRTF)..

SJF and SRTF (Example)

Process Arrival TimeBurst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

0 8 16

P1 P2 P3

Gantt Chart for Schedule

P4

12 7

Average waiting time =

 (0+6+3+7)/4 = 4

Non-Preemptive SJF Scheduling

0 7 16

P1 P2 P3

Gantt Chart for Schedule

P4

11 5

Average waiting time =

 (9+1+0+2)/4 = 3

P2 P1

2 4

Preemptive SJF Scheduling

SJF/SRTF Discussion
 SJF/SRTF are the best you can do at minimizing average

response time

 Provably optimal (SJF among non-preemptive, SRTF among

preemptive)

 Since SRTF is always at least as good as SJF, focus on SRTF

 Comparison of SRTF with FCFS and RR

 What if all jobs the same length?

 SRTF becomes the same as FCFS (i.e. FCFS is best can do if all jobs

the same length)

 What if jobs have varying length?

 SRTF (and RR): short jobs not stuck behind long ones

 Starvation
 SRTF can lead to starvation if many small jobs!

 Large jobs never get to run

SRTF Further discussion
 Somehow need to predict future

 How can we do this?

 Some systems ask the user
 When you submit a job, have to say how long it will take

 To stop cheating, system kills job if takes too long

 But: Even non-malicious users have trouble predicting runtime of their
jobs

 Bottom line, can’t really know how long job will take
 However, can use SRTF as a yardstick

for measuring other policies

 Optimal, so can’t do any better

 SRTF Pros & Cons
 Optimal (average response time) (+)

 Hard to predict future (-)

 Unfair (-)

Determining Length of Next CPU

Burst
 One can only estimate the length of burst.

 Use the length of previous CPU bursts and

perform exponential averaging.
 tn = actual length of nth burst

 n+1 =predicted value for the next CPU burst

 = 0, 0 1

 Define

 n+1 = tn + (1-) n

Exponential Averaging(cont.)

 = 0

 n+1 = n; Recent history does not count

 = 1

 n+1 = tn; Only the actual last CPU burst counts.

 Similarly, expanding the formula:

 n+1 = tn + (1-) tn-1 + …+

 (1-)^j tn-j + …

 (1-)^(n+1) 0

 Each successive term has less weight than its predecessor.

j

Priority Scheduling

 A priority value (integer) is associated with

each process. Can be based on
 Cost to user

 Importance to user

 Aging

 %CPU time used in last X hours.

 CPU is allocated to process with the highest

priority.
 Preemptive

 Nonpreemptive

Priority Scheduling (cont.)

 SJN is a priority scheme where the priority is

the predicted next CPU burst time.

 Problem
 Starvation!! - Low priority processes may never execute.

 Solution
 Aging - as time progresses increase the priority of the

process.

Round Robin (RR)

 Each process gets a small unit of CPU time
 Time quantum usually 10-100 milliseconds.

 After this time has elapsed, the process is preempted and
added to the end of the ready queue.

 n processes, time quantum = q

 Each process gets 1/n CPU time in chunks of at most q
time units at a time.

 No process waits more than (n-1)q time units.

 Performance

 Time slice q too large – response time poor

 Time slice ()? -- reduces to FIFO behavior

 Time slice q too small - Overhead of context switch is
too expensive. Throughput poor

Example of RR with Time Quantum = 20
 Example: Process Burst Time

 P1 53

 P2 8

 P3 68

 P4 24

 The Gantt chart is:

 Waiting time

 P1=(68-20)+(112-88)=72

 P2=(20-0)=20

 P3=(28-0)+(88-48)+(125-108)=85

 P4=(48-0)+(108-68)=88

 Average waiting time = (72+20+85+88)/4=66¼

 Average completion time = (125+28+153+112)/4 = 104½

 Thus, Round-Robin Pros and Cons:

 Better for short jobs, Fair (+)

 Context-switching time adds up for long jobs (-)

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 28 48 68 88 108 112 125 145 153

Comparisons between FCFS and Round Robin

 Assuming zero-cost context-switching time, is RR always better than
FCFS?

 Simple example: 10 jobs, each take 100s of CPU time
 RR scheduler quantum of 1s
 All jobs start at the same time

 Completion Times:

 Both RR and FCFS finish at the same time

 Average response time is much worse under RR!

 Bad when all jobs same length

 Also: Cache state must be shared between all jobs with RR but can be
devoted to each job with FIFO
 Total time for RR longer even for zero-cost switch!

Job # FIFO RR

1 100 991

2 200 992

… … …

9 900 999

10 1000 1000

Quantum

Completion

Time

Wait

Time

Average P4 P3 P2 P1

Earlier Example with Different Time Quantum

P2

[8]

P4

[24]

P1

[53]

P3

[68]

0 8 32 85 153

Best FCFS:

62 57 85 22 84 Q = 1

104½ 112 153 28 125 Q = 20

100½ 81 153 30 137 Q = 1

66¼ 88 85 20 72 Q = 20

31¼ 8 85 0 32 Best FCFS

121¾ 145 68 153 121 Worst FCFS

69½ 32 153 8 85 Best FCFS

83½ 121 0 145 68 Worst FCFS

95½ 80 153 16 133 Q = 8

57¼ 56 85 8 80 Q = 8

99½ 92 153 18 135 Q = 10

99½ 82 153 28 135 Q = 5

61¼ 68 85 10 82 Q = 10

61¼ 58 85 20 82 Q = 5

Round Robin Example
Time Quantum = 20 Initially, UNIX timeslice (q) = 1 sec

 Worked OK when UNIX was used by

few (1-2) people.

 What if three compilations going on? 3

seconds to echo each keystroke!

 In practice, need to balance short-job

performance and long-job throughput
 q must be large wrt context switch, o/w

overhead is too high

 Typical time slice today is between 10ms –

100ms

 Typical context switching overhead is 0.1 – 1

ms

 Roughly 1% overhead due to context switching

 Another Heuristic - 70 – 80% of jobs
block within timeslice

Process Burst Time

P1 53

P2 17

P3 68

P4 24

0

P1 P4 P3

Gantt Chart for Schedule

P1 P2

20

P3 P3 P3 P4 P1

37 57 77 97 117 121 134 154 162

Typically, higher average turnaround time than SRTF,

but better response

Example to illustrate benefits of SRTF

 Three jobs:

 A,B: both CPU bound, run for week

C: I/O bound, loop 1ms CPU, 9ms disk I/O

 If only one at a time, C uses 90% of the disk, A or B

could use 100% of the CPU

 With FIFO:

 Once A or B get in, keep CPU for two weeks

 What about RR or SRTF?

 Easier to see with a timeline

C

C’s

I/O

C’s

I/O

C’s

I/O

A or B

SRTF Example continued:

C’s

I/O

CABAB… C

C’s

I/O

RR 1ms time slice

C’s

I/O

C’s

I/O

C A B C

RR 100ms time slice

C’s

I/O

A C

C’s

I/O

A A

SRTF

Disk Utilization:

~90% but lots of wakeups!

Disk Utilization:

90%

Disk Utilization:

9/201 ~ 4.5%

Multilevel Queue
 Another method for exploiting past behavior

 Ready Queue partitioned into separate queues
 Each queue has a priority; Higher priority queues often considered

“foreground” tasks

 Eg. system processes, foreground (interactive), background (batch), ….

 Each queue has its own scheduling algorithm
 Example: foreground (RR), background(FCFS)

 Sometimes multiple RR priorities with quantum increasing exponentially

(highest:1ms, next:2ms, next: 4ms, etc)

 Processes assigned to one queue permanently.

 Scheduling must be done between the queues
 Fixed priority - serve all from foreground, then from background.

 Time slice - Each queue gets some CPU time that it schedules - e.g. 80%

foreground(RR), 20% background (FCFS)

Multilevel Queues

Background

Scheduling Fairness
 What about fairness?

 Strict fixed-priority scheduling between queues is unfair (run highest,
then next, etc):
 long running jobs may never get CPU

 In Multics, shut down machine, found 10-year-old job

 Must give long-running jobs a fraction of the CPU even when there
are shorter jobs to run

 Tradeoff: fairness gained by hurting avg response time!

 How to implement fairness?
 Could give each queue some fraction of the CPU

 What if one long-running job and 100 short-running ones?

 Like express lanes in a supermarket—sometimes express lanes get so
long, get better service by going into one of the other lines

 Could increase priority of jobs that don’t get service
 What is done in UNIX

 This is ad hoc—what rate should you increase priorities?

 And, as system gets overloaded, no job gets CPU time, so everyone
increases in priorityInteractive jobs suffer

Multilevel Feedback Queue

 Multilevel Queue with priorities

 A process can move between the queues.
 Aging can be implemented this way.

 Adjust each job’s priority as follows (details vary)
 Job starts in highest priority queue

 If timeout expires, drop one level

 If timeout doesn’t expire, push up one level (or to top)

 Parameters for a multilevel feedback queue scheduler:
 number of queues.

 scheduling algorithm for each queue.

 method used to determine when to upgrade a process.

 method used to determine when to demote a process.

 method used to determine which queue a process will enter when that
process needs service.

Multilevel Feedback Queues

 Example: Three Queues -
 Q0 - time quantum 8 milliseconds (RR)

 Q1 - time quantum 16 milliseconds (RR)

 Q2 - FCFS

 Scheduling
 New job enters Q0 - When it gains CPU, it receives 8

milliseconds. If job does not finish, move it to Q1.

 At Q1, when job gains CPU, it receives 16 more milliseconds. If

job does not complete, it is preempted and moved to queue Q2.

 Countermeasure: user action that can foil intent of the
OS designer
 For multilevel feedback, put in a bunch of meaningless I/O to

keep job’s priority high

 Of course, if everyone did this, wouldn’t work!

Multilevel Feedback Queues

Multiple-Processor Scheduling

 CPU scheduling becomes more complex
when multiple CPUs are available.

 Have one ready queue accessed by each CPU.

 Self scheduled - each CPU dispatches a job from ready Q

 Master-Slave - one CPU schedules the other CPUs

 Homogeneous processors within
multiprocessor.

 Permits Load Sharing

 Asymmetric multiprocessing
 only 1 CPU runs kernel, others run user programs

 alleviates need for data sharing

Real-Time Scheduling

 Hard Real-time Computing -
 required to complete a critical task within a guaranteed amount of time.

 Soft Real-time Computing -
 requires that critical processes receive priority over less fortunate ones.

 Types of real-time Schedulers
 Periodic Schedulers - Fixed Arrival Rate

 E.g. Rate monotonic (RM). Tasks are periodic. Policy is shortest-

period-first, so it always runs the ready task with shortest period.

 Aperiodic Schedulers - Variable Arrival Rate

 E.g. Earliest deadline (EDF). This algorithm schedules the task with

closer deadline first

